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Abstract-The first objective of this work is to use the differential equations of equilibrium of cylindrical
shells in conjunction with the principle of minimum complementary energy for the derivation of constitutive
equations for coupled stretching, bending and twisting of straight thin-walled open- and closed-cross section
beams.

The second objective is to use appropriate solutions of the cylindrical-shell differential equations, again in
conjunction with the principle of minimum complementary energy, for the sake of deriving values for
flexibility and stiffness coefficients of end-loaded, thin-walled cantilever beams, with applications to the
problem of shear center and twist center location, including an analysis of the effect of shear lag on the
location of these centers.

INTRODUCTION
In what follows we are concerned with simplifications and generalizations of results for pure
bending, stretching, twisting and flexure of thin-walled beams, including the problem of shear
center and twist center location, which have been obtained recently [3-6].

For the problems of bending, stretching and twisting our principal simplification consists in
the use of an appropriate version of the principle of minimum complementary energy in place of
the explicit consideration of strain displacement relations [3,4,6].

Insofar as the problem of cantilever flexure is concerned we are able to simplify the problem
for an important class of cases by recognizing that application of the complementary energy
principle in Rayleigh-Ritz fashion can be done in such a way that it leads directly to the
appropriate explicit form of load deflection relations which are involved in our defining relations
for shear center and twist center location[5].

Insofar as the generalizations of our earlier work are concerned we mention in particular a
consideration of the flexure problem without use of a Euler-Bernoulli hypothesis concerning the
distribution of axial normal strains, for the purpose of appraising the influence of an effect known
as shear lag on the location of the centers of shear and of twist.

DIFFERENTIAL EQUATIONS OF EQUILIBRIUM FOR CYLINDRICAL

SHELLS AND EXPRESSIONS FOR CROSS-SECTIONAL FORCES AND MOMENTS

We consider cylindrical shells with generators in the direction of a z-axis, and with the
surface equation of the shell given in the form x. = x .(s), X2 = X2(S), where s represents arc length
in circumferential direction.

We designate stress resultants by Nand Q, and stress couples by M, in accordance with Fig.
1, and have then three equations of force equilibrium and three equations of moment equilibrium
of the form

N.... +Nzs.• +kQ. = 0,

Q•.• +Q•.• - kNss = 0,

M.s.• +M.s.• = Q..

Nsz.• +Nzz•• = 0,

Nsz - Nzs +kMsz = 0,

M••.• +Mzz•• = Q•.

(1,2)

(3,4)

(5,6)

In this k = dB Ids represents the circumferential curvature of the shell.
Expressions for cross-sectional forces and moments are given, again in accordance with Fig. 1,

as integrals over stress resultants and couples, as follows
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where
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- X2

ds/1
L~J-dXI

- dX
2

XI

Fig. I.

N= JNzz ds, M I = f (Nzzx2-Mzzx;)ds,

M 2 = - f(Nzzx. +Mzzx;) ds, F I = f (Nz.x; +QzxD ds,

F2=f (Nux; - Q.x Dds, T =f (Mz• + rNNz• - rQQz) ds,

(7,8)

(9, 10)

(11,12)

and

( )' == d( )/ds, x; = - sin 9, x; = cos 9, (13)

(14)

with the differentiation formulas, r;" = krQ and rb= 1- krN.
The integrals in eqns (7)-(12) are to be considered as line integrals over a closed contour, for

the case of closed-cross section shells. The case of open-cross section shells may be considered
to be a special case of this, with resultants and couples having zero values along appropriate
portions of the contour.

It is an important property of the integrals in eqns (10)-(12) that their direct usefulness
depends on the assumption of a non-vanishing transverse shear deformability of the material of
the shell. Upon introduction of the Love-Kirchhoff hypothesis of no transverse shear
deformation into theory, with consequential reactive force properties for the resultants Qz and
Q.. it becomes advantageous to eliminate Qz from eqns (10)-(12). Use of the equilibrium eqn (6),
in conjunction with an integration by parts and observation of eqn (4), then gives as expressions
for F.. F2 and T,

(15, 16)

(17)

and we note, in particular, the replacement of the shear-stress resultant N.. in (9)-(12) by the
shear-stress resultant N.z in (15)-(17).
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THE PRINCIPLE OF MINIMUM COMPLEMENTARY
ENERGY FOR A CYLINDRICAL SHELL

We supplement the equilibrium differential eqns (1)-(6) by constitutive equations, in terms of
a complementary energy density function W, of the form

aW
Ezz = aNzz '

aw aW aw
E.. = aN.. " .. , 'Yz = aQz" .. , 1<.. = aM.. ' (18)

and consider the case of a closed cross section shell with two edges z =z1 and z = Z2 of the shell
having prescribed values of the displacements u.. u.. W, ~.. ~.. with the meaning of these
components being such as to be consistent with an expression Nzzuz + N..u. + Qzw + Mzz~z +
M..~. for the work of the edge stress resultants and couples N... N... Q.. M... M...

It then follows from known results that an appropriate version of the principle of minimum
complementary energy consists in the variational equation

8ff'JW ds dz - J(Nzzuz + N..u. + Qzw + Mzz~z + M..~. );~ dS} =0 (19)

with the quantities uz(l) and uz(2), etc., being prescribed functions of s, and with the argument
functions N.., etc., which enter into W being such as to satisfy the equilibrium differential eqns
(1)-(6).

We note that the above statement for closed cross section shells contains the problem of the
open cross section shell as a special case, by way of appropriate statements concerning the form
of the complementary energy density function Wand the distribution of stress resultants and
couples, and that the results obtained in this way must come out the same as those directly
derived for an open cross section shell with the stipulation of vanishing N... N... Q.. M... M..
along the edges S = const.t

We also note that eqn (19) retains its validity if, at either edge, modifications of edge conditions,
such as Uz =Uz into Nzz =0, etc., are being assumed, except that in this event the stress states
which are used in (19) must satisfy all the prescribed (homogeneous) stress resultant and couple
boundary conditions as well.

FORM OF THE COMPLEMENTARY ENERGY FUNCTIONAL
FOR RIGID BODY EDGE TRANSLATIONS AND ROTATIONS

We consider a cross section z = const, and consider separately in-plane and out-of-plane
translations and rotations.

We write for out-of-plane translations and rotations

(20)

where XI = x \(s), X2 = X2(S), and U, <1>1 and <1>2 are given constants.
Insofar as in-plane translation and rotation are concerned, we first introduce axes -parallel

translational components

(21)

with UI> U2 and <I> being constants. Subsequent to this we write as expressions for tangential and
normal translational components, and for the associated rotational component,

~. = <1>. (22)

Introduction of (20) to (22) into the line integral portion of the cO\Ilplementary energy
functional then gives

tAnd with the two conditions M.. =0and Q. =0being contracted into the one condition Q. +M..., =0for the case that W
does not involve Q. and Q,.
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f (Nzzuz + ... + Mzs~s) ds = f{Nzz [V + <I>,xz - <l>zx.) - Mzz [<I>,x; + <l>zx;)

+ Nz, [(V, - xz<l»x; + (Vz+ x,<I»x;)

Equation (23) may be reduced further, with the help of the defining relations (7) to (12) and (14),
so as to read

AXIALLY UNIFORM STATES OF STRESS

We consider, for the purpose of analyzing the problems of pure stretching, bending and
twisting, the most general system of solutions of the equilibrium differential eqns (1)-{6) with the
property that all resultants and couples are independent of the axial coordinate z.

We now have that that the system (I)-{6) decomposes into two separate systems, one of them
being of the form

and the other being

N~s +kQ. =0, Q~-kN.. =0, (25)

N~z =0, N zs = N sz +kMsz, (26)

We note that these equations do not involve Nm Mzz and Mz.. and we further note that with
these we have, on the basis of eqns (15) and (16), that

(27)

in eqn (24), so that in fact the assumption of z-independent stress states implies a restriction to
states of stretching, bending, and twisting alone, and the disappearance of the displacement
components V, and Vz from the line integral (24).

In order to fix the ideas in regard to the problem of pure stretching, bending, and twisting, we
now consider a shell of length 2a, with rigid body translational and rotational displacement
components

V= ±ae, <I> = ± aT, (28)

prescribed for the ends z = ± a.
Introduction of (28) and (27) into (24), and observation of the fact that the axial uniformity of

stress implies z-indepencence of the complementary energy density Win (19), then allows (19) to
be reduced to

(29)

with the variations of stress resultants and stress couples being independent except for
restrictions imposed by the equilibrium eqns (25) and (26).

As regards these restrictions, we observe that the first two equations in (25) may be solved
explicitly in terms of two constants N, and N z, as follows

(30)
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Writing then
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(31)

the third equation in (25) gives, in terms of N, and N 2 , and a third constant M,

We next solve the first equation in (26) in terms of a fourth constant S,

Nsz = S,

leaving the remaining two equations in (26) in the form

(32)

(33)

Nzs = S+kM... (34)

with the dependence of Msz on s having to be determined through use of the variational eqn (29).
We will not now complete the indicated analysis in full generality, but rather restrict attention

to the case of a shell with absent transverse shear deformability, and the twisting moment
symmetry property Msz = M... and with the possibility of disregarding the difference between Nsz

and Nzs in the constitutive equations of the problem. We then have that the complementary
energy density function W is of the form

W = W(Nz.. Ns.. Ns.. Mz.. Ms.. Msz ),

and the variational eqn (29) becomes, in view of (31) to (33),

(35)

(36)

Considering that 5N... 5Mzz and 5Msz are arbitrary functions of s we obtain from (36) the
three "local" Euler equations

aW
-M =27",a sz

(37)

and in view of the fact that 5S, 5N., 5N2 and 5M are four arbitrary constants we additionally
obtain the four "global" Euler equations

J::: ds = 7" JrN ds,

J( aW, aW )--X2---X. ds =0,
aN.. aM.. I aw

aM.. ds = 0,

(38)

with these four equations being in the nature of kinematic single-valuedness conditions for the
problem of the closed-cross section shell and, as can be shown by an appropriate limiting process,
with a replacement of (38) by the relations

S =0, N,=O, M=O, (39)

for the open-cross section shell.
As regards the actual solution of the above general problem, the procedure will be to use (37)
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in order to express Nzz, Mzz, Msz in terms of the eight constants E, Kt, K2' 1", S, Nt, N 2, M and to
subsequently use the four defining eqns (7)-(9) and (17) for N, Mt, M2 and T, in conjunction with
the four global Euler equations in (38), for the simultaneous determination of the indicated eight
constants in terms of N, MI. M 2 and T. The results for four of these constants, in the form

(40)

then may be interpreted as a system of one-dimensional constitutive equations for the problem
of combined stretching, bending, and twisting of cylindrical shell beams, subject to an
assumption of negligibility of transverse shear deformation effects.

Application of the procedure as indicated, for the general case, comes out to be of some
complexity. We have previously obtained the solution for the special case of pure torsion with
complementary energy function W == N~z12C + M~z/2D, with the result including an explicit
torque-twist relation which contains as special cases the known classical results for thin-walled
open and thin-walled closed cross sections [3]. We have also considered previously the special
case of the problem of pure bending and stretching of cross-ply laminated shells [6]. We note here
that for this case the function W comes out to be

and that with this function we may obtain an alternate derivation of the results in [6].

Constitutive equations for anisotropic thin -walled closed -cross -section shells
We consider now, as a further illustration of the general procedure, an approximate solution

of the problem of combined stretching, bending, and twisting, with the approximation consisting
in the assumption of the adequacy of a complementary energy density function W of the form

(42)

With this expression for W eqns (37) reduce to the one equation

(43)

and the consequences of eqns (38) are a relation

with Nsz having the constant value S, in accordance with (33).
Additionally, we have from (7)-(9) and (17),

(44)

N == JN zz ds, M 2 == - JNzzx. ds, (45)

(46)

We now use (43) and (44) in order to obtain as expression for the shear-stress resultant S,
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sI(I -CBCO)~- I d - ICBds_ I CBds+ Ix CBds
C C - T rN SEC KI X2 C K2 I C 'BO 0 BO BO BO

with the torque T then given in terms of T, E, KI and K2, in accordance with (46), in the form

T = sI rN ds,

and with the axial force N and the bending moments M I and M2 given as

859

(47)

(48)

N = -sI ceB~S+E I CBds + KI I CBX2 ds - K2 I CEXI ds,

M I = - s I X2 ceB~S + E I CBX2 ds + KI I cBx/ ds - K2 I CBX2XI ds, (49)

M 2 = +sI XI ~B~S- E I CEXI ds - KI I CBX\X2 ds + K2 I CEX/ ds.

It is evident that relations of the form (40) will result upon inversion of (48) and (49), with S as
in (47), and that a considerable simplification of the results occurs upon introducing the
stipulations f(XhX2,XIX2)CB ds =0 and/or !(Xh x2)(CB/CBo )ds =0.

THE PROBLEM OF FLEXURE AND THE CENTERS

OF SHEAR AND OF TWIST

We now consider a shell of length a with the end z = 0 held fixed so that
ii. = ii. = Iii = iP. = iP. =0 for z = O. Insofar as the end z = a is concerned we prescribe N.. =0
and M.. = 0 in place of conditions on u. and ({)., with the remaining conditions being those of
in-plane rigid body translation and rotation, in accordance with eqns (21) and (22).

The appropriate version of the principle of minimum complementary energy follows then
from eqns (19) and (24) in the form

(50)

with F h F2 and T as before given by eqns (IOHI2).
Before attempting to evaluate the variational eqn (50) we recall our previously proposed

definitions for shear and twist center locations. These are based on the evident fact that,
whatever the solution of (50) in conjunction with the equilibrium eqns (lH6) and the boundary
conditions N.. (a, s) = M.. (a, s) = 0 turns out to be, it will imply expressions for forces F; and
torque T, in terms of stiffness coefficients K, of the form

(51)

and therewith also inverted relations, in terms of flexibility coefficients C, of the form

(52)

With this, and with eqns (21) for the displacements iii in the direction of the axes Xi of all the
points of the end cross sections, we now define the coordinates Xi< of a center of shear as the
coordinates of that point through which the lines of action of the forces F; must pass in order that
there be no rotation of the end cross section, with the torque T being just the moment of the
forces F; about the origin of the xi-coordinate system.

Setting then, in accordance with this definition, simultaneously

ell = 0, (53)
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in the third relation in (52), we will have
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(54)

Since (54) must hold independent of the value of the ratio F,IF2 we obtain as expressions for the
coordinates of the center of shear

C..,2
X" =--C'

<l>T

C<I>I
X2'=-C.

<l>T

(55)

Having eqns (52), it is equally well possible to obtain the location of a center of twist in terms
of the flexibility coefficients C. We define the coordinates XiT of the center of twist as the
coordinates of that point in the cross section which remains fixed, in the event that the end
section load consists solely of a torque T, with both components of force F; having zero values.

Setting then, in accordance with this definition

F , = F2 =0,

we have, on the basis of eqns (52),

(56)

C2T
XiT = - C<I>T'

C,T
X2T=-C.

<l>T
(57)

We note that while the coordinates of the center of shear are given in terms of the elements of
the third row of the flexibility coefficient matrix, we have that the coordinates of the center of
twist are given in terms of the elements of the third column of this matrix, in such a way that
center of shear and center of twist coincide for the case of a symmetric flexibility coefficient
matrix.

We now turn to the problem of selecting expressions for stress resultants and couples for use
in conjunction with the variational equation (50). Evidently, for an exact solution of the problem
it would be necessary to use the most general solution of the differential-equation system (1}­
(6). While it is known how to write this most general solution in terms of stress functions,
introduction of these stress function expressions into the variational equation would, in the end,
leave us with a boundary value problem for a system of partial differential equations, of a kind
which could equally well have been established without use of variational considerations. The
advantages of the variational procedure are that with it we may utilize suitably selected solutions
of eqns (1H6), in the expectation that thereby a rational approximate solution of the problem of
flexure, as formulated in the foregoing, may be obtained.

Our primary selective endeavor in what follows is to limit our choice of expressions for stress
resultants and couples by the stipulation that those resultants and couples which enter into the
expressions for forces F; and torque T are independent of the axial coordinate z, just as the
values of F; and T themselves.

Setting then

N" = N•• (s), Q. = Q.(s), M" = M,,(s), (58)

we note first that thereby eqns (1), (3) and (5) are reduced to the same form (25) for N... Q.. and
Mss as for the case of axially uniform states of stress. This means that we must again take N... Q..
and Mss in the form (31) and (32), except that now the parameters N" N 2 , and M may be
functions of z which remain to be determined.

An inspection of the remaining eqns (2), (4) and (6) suggests further that we complement eqns
(49) by assumptions of the form

Nsz = S(s), Msz = R(s), (59)

where introduction of the symbols Sand R will be convenient for what follows.
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Equations (59) in conjunction with the conditions that Nzz(a, s) = Mzz(a, s) = 0 in turn imply
that

Nzz =(a -z)S', Nzs =S+kR, Mzz = (a - z)(R' - Qz), (60)

and it now only remains to use the variational eqn (50), with or without additional constraints
imposed on the form of the functions S, R, Q" Mzs in (58)-(60) and on the form of the functions
Nt, N 2 , and M in (31) and (32), for the sake of deriving Euler differential equations and boundary
conditions for these functions. In what follows we shall be concerned with two aspects of this
problem, which seem to us to be of particular interest.

EFFECT OF ANISOTROPY ON SHEAR CENTER

LOCATION: AN EXPLICIT FORMULA

In order to obtain an indication of the effect of anisotropy in the solution of the problem of
flexure, we consider the problem of determing values of the flexibility coefficients in eqns (52) for
a shell with complementary energy density function

(61)

with the choice of this function being associated by us with an assumption of negligible
contributions of N,., M,. and Mm with an assumption of negligible transverse shear
deformability of the elements of the shell, and with the assumption that Mzs = Msz'

Neglecting Mzz means additionally that we now have for the forces F; and toruqe Tin eqn (50)
the integral representations

F; =fNszx; ds, (62)

We initiate our calculations by a St. Venant-type assumption for the distribution of axial
normal stress, in the form

(63)

with the functions nj (s) at this stage being subject to no other requirement than to lead to results
which are consistent with eqns (7)-(9), in which now M. = (z - a)F2 and M2= -(z - a)P1• These
requirements are satisfied provided

f nj ds =0, (64)

We next use (63) in order to determine N", consistent with eqns (59) and (60), in the form

(65)

with So being a constant of integration.
It will turn out to be of advantage to express So in terms of a contribution TN = ~ Nsz'N ds to

the total torque T, and to write

where

I
rno= ,

f'N ds

(66)

(67)
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We introduce eqns (63) and (67) into eqn (61), and the result into the variational eqn (50). In
this way eqn (50) assumes the form

_ a2(F1nl +F2n2)(TNmo+ Flml +F2m2)
2 CEO

with the independent variations in this equation being the three constants 8FI and 8TN , and the
one function 8M...

The Euler equation coming from 8M.. is

aMsz ::::: 2D<I>. (69)

The Euler equations coming from 8R and 8TN are

(70)

(71)

Having obtained eqns (70) and (71), we very nearly have arrived at the desired result consisting
of expressions for <I> and the V; in terms of T and the Ft, as in eqn (52). To complete the analysis
we write the second relation in (62) in the form T == TN +TM where TM == ~ 2Msz ds. From this
we obtain, with the help of (69)

(72)

Introduction of (72) into (71) gives a result which is equivalent to the third relation in (52), in
the form

FI1. (.!!!.!._~) ds +F21. (m2- an2 ) ds +T1~ = ~ (~+ 41 D ds1~). (73)r Co 2CEO mo r Co 2CEO mo r Co a mo j r Co

We omit listing explicit expressions for the flexibility coefficients C4>/ and C4>T which are
implied by (73), as well as for the flexibility coefficients Ci / and CT which are implied by (70) in
conjunction with (73), and the first relation in (43). We will however state explicitly expressions
for the coefficient ratios which determine the location of the center of shear, in accordance with
eqns (55). Evidently these expressions are

(74)
X2s == 1. mo ds .

rCo

1.(m2_~)dSr Co 2CEO

X Is == - 1. mo ds '
rCa

With mo and ni given in accordance with (63), (64) and (6J), we may write alternately,
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(75)

with a corresponding equation for X2•.
Remarkably, while eqn (75) is valid for the case of a closed-cross section we may from it

deduce directly the elementary result for the case of the open-cross section, as follows. Let 10 be
the circumferential length of the open-cross section and Ie > 10 the corresponding length of a
fictitious closed-cross section such that Co =0 for 10 < s :$ Ie. Considering the fact that in the
interval (10, Ie) we will also have n2 =0 and f,: n2 ds =0, with this latter result being a consequence
of eqns (64), we may conclude that for the open-cross section the second and third terms in
(75) take on the values zero and so, for an open-cross section

(75')

again with a corresponding equation for X2•.

Shear center coordinates for St. Venant normal stress distribution
We now assume that the coordinate axes are principal centroidal axes in the sense that

f CEXI ds =0, (76)

and we choose as expressions for the functions nl in eqn (63) for the axial normal stress resultant
distribution N..,

(77)

with (77), in conjunction with (76), being consistent with (64), as it must be.
Introduction of n2 from (77) into eqn (66) gives further

1 { f rN ds f(1' ) ds f(1' ) frN ds faCEX2 }
Xh =1 J: CEX2ds c- CEX2ds rN ds+ J: -Cds,

2 r (ds/Co ) 0 0 0 r ds/Co EO
(78)

again with a corresponding expression for X2•.
We note, for the sake of a comparison with earlier results in the literature [7], the possibility of

integrating by parts, in the form

f(f CEX2) ~: =o-f(f ~:)CEX2ds,

f(1' CEx2)rN ds =o-f (1' rN dS)CEX2 dS.

(79)

With this, and upon setting l/CBG =0, Co =Ot and CE =Et, with G and E independent of s, eqn
(78) and its open-cross section specialization (78') reduce to formulas previously given in[7].

We also note the possibility of using (75) for the purpose of deducing values of Xh, consistent
with St. Venant's assumption n2 = CE(A 02 +A 12X 1 + A22X2), for other than principal centroidal
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axes. A necessary step for this is to determine the three coefficients Az through use of three
relations p(I, x 1> xz)nz ds = (0, 0, 1) which are part of eqn (64).

EFFECT OF SHEAR LAG ON SHEAR CENTER LOCATION

We define shear lag as the influence which transverse shear deformation in beams has on the
distribution curves for stress, in comparison with the corresponding results when this effect is
being neglected. Earlier studies of the problem of shear lag have shown its importance in
particular with reference to "wide-flanged" beams [2]. However, no consideration is known to us
concerning the influence of this effect on shear and twist center location.

In what follows we show the nature of the analysis which is involved, for simplicity's sake
limited to the open-cross section case. Additionally, we obtain explicit results for the
modification due to shear lag of the well-known elementary formula for the location of the center
of shear of a beam with uniform thin-walled circular ring section cross section, as given first by
Griffith and Taylor[I].

We once again depart from the variational eqn (41), this time for a cylindrical shell with
complementary energy density

(80)

We make no assumption concerning the distribution of N zz over the cross section, as in (63),
but rather use eqn (59), and the first relation in (60), with the variational eqn (50) now becoming

(81)

and with the function S subject to the constraint boundary conditions S(SI) =S(sz) =o.
Evidently, the Euler equations associated with (81) are the two differential equations, of

second and zeroth order, respectively,

aR = 4cI>D,

with F; and T in eqn (51) now being of the form

(82)

(83)

f'2

F; = Sx; ds,s. f
S 2

T = " (2R + rNS) ds. (84)

Solution for uniform circular ring-sector cross section
We write, in accordance with Fig. 2,

and therewith
xl=bcosslb, Xz = b sin sIb, (85)

x~ = - sin sIb, x~ = cos sIb. (86)

with s confined to the interval - f3b s; s s; f3b.
Assuming CE and Co to be independent of s we have as solution of the differential equation

(82) subject to the boundary conditions S(± f3b) = 0,

S -Co{bA.(1 cOShASlb)+AZUz( s a cosh Aslb)
-- 'V - -- cos--cos,...

a cosh Af3 I + Az b cosh Af3

AZUl (. S . sinh ASlb)}
- I + Az sm b - sm f3 sinh Af3 ' (87)
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X,

Fig. 2.

where

Introduction of (87) and (86) into eqn (84) gives as expressions for forces and torque

865

(88)

(89)

(90)

(91)

We note that the symmetry of the cross section about the xI-axis leads, as expected, to the
result that F I depends on U\ alone, while F2 and T depend on both U2 and <1>, with the flexibility
coefficients in (90) and (91) satisfying the expected symmetry relation K 2<1> = K T2 •

In determining an expression for the shear center coordinate x Is we find that the assumed
symmetry makes it just as easy to express x Is in terms of stiffness coefficients, in place of using
the general flexibility coefficient formula (55). Setting <I> = 0 and T = F2x Is we now have from (90)
and (91)

. {3 {3 tanh A{3sm -cos A
Xis

2b =. 2A 2cos {3 ( . tanh A{3) .
{3 - sm {3 cos {3 + 1+ A2 sm {3 - cos {3 A

(92)

Considering the defining relation (88) for A, and the fact that the nature of our approximation
is such as to limit the validity of our results to the case of relatively small values of A, we may
replace eqn (92) effectively by

sin {3 - {3 cos {3 + -3
1
A2{33 cos {3

Xis

2b = {3 - sin {3 cos {3 +2A 2cos {3(sin {3 - {3 cos {3)'
(93)

with the well-known elementary theory formula resulting from (93) upon setting A = 0 in this
equation.

We note in particular the special-case results

{3 = 1T,

(94)
1T

{3 =2' ;;; = ~ (independent of A).
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The possible magnitude of the effect of shear lag on the location of the center of shear may be
gaged from a numerical example, with bla =0.1, and CHICo =EIG =2(1 + II) =8/3, giving a
ratio x,./2b =1- 0.1 = 0.9 in place of the conventional value 1.0.

We will refrain from discussing further implications of the force deflection relations (89H9l),
except for stating the simple formula

{3 = 7f, (95)

in which the additional deflection due to transverse shear is represented by the second term in the
parenthesis on the right.
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